Improved Sieving on Algebraic Curves
نویسندگان
چکیده
The best algorithms for discrete logarithms in Jacobians of algebraic curves of small genus are based on index calculus methods coupled with large prime variations. For hyperelliptic curves, relations are obtained by looking for reduced divisors with smooth Mumford representation [4]; for non-hyperelliptic curves it is faster to obtain relations using special linear systems of divisors [2, 3]. Recently, Sarkar and Singh have proposed a sieving technique, inspired by an earlier work of Joux and Vitse, to speed up the relation search in the hyperelliptic case. We give a new description of this technique, and show that this new formulation applies naturally to the non-hyperelliptic case with or without large prime variations. In particular, we obtain a speed-up by a factor approximately 3 for the relation search in Diem and Kochinke’s methods.
منابع مشابه
Sieving for rational points on hyperelliptic curves
We give a new and efficient method of sieving for rational points on hyperelliptic curves. This method is often successful in proving that a given hyperelliptic curve, suspected to have no rational points, does in fact have no rational points; we have often found this to be the case even when our curve has points over all localizations Qp. We illustrate the practicality of the method with some ...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملSieving in Function Fields
We present the rst implementation of sieving techniques in the context of function elds. More precisely, we compute in class groups of quadratic congruence function elds by combining the Algorithm of Hafner and McCurley with sieving ideas known from factoring. We apply our methods to compute generators and relations of the Jacobian variety of hyperelliptic curves over nite elds.
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کامل